Aromaticity

Hückel's rule states that if a cyclic, planar, conjugated molecule having $(4n+2)\pi$ electrons (n = 0, 1, 2 etc), is known as aromatic conpound.

Non-aromatic Anti-aromatic Non-aromatic Anti-aromatic

Aromatic substitution reactions

IPSO substitution

More example of nucleophilic substitution reaction

N≡N

Why simple benzene does not under goes normal nucleophilic substitution or addition reactions??

In **benzene**, the π -electrons are delocalised and makes the structure more stable. Delocalization of π electron is called resonance. Thus, **benzene does not** give **addition reactions** because of resonance stabilisation

 Benzene does not react with Br₂ to yield an addition product. Instead, in the presence of a Lewis acid, bromine substitutes for a hydrogen atom, yielding a product that retains the benzene ring.

Whereas unsaturated hydrocarbons such as alkenes, alkynes and dienes readily undergo addition reactions, benzene does not.

Electrophilic aromatic substitution

- Electrophilic aromatic substitution is the most common reaction of aromatic compounds
 - It replaces a proton (H⁺) on an aromatic ring with another electrophile (E⁺)
 - It leads to the retention of the aromatic core

Electrophilic Aromatic Substitution: The General Mechanism

Step wise mechanism of $Ar.S_E 2$ reaction

+ \mathbf{H}^+

Electrophilic Aromatic Substitution: Reaction Energy Diagram

intermediate σ complex

intermediate σ complex has been isolated

Electrophilic Aromatic Substitution: Reaction Energy Diagram

The effect of substituents on the rate of electrophilic aromatic substitution

Activating Substituents

Deactivating Substituents

Orientation in presence of electron donating (activating) group

Orientation in presence of electron withdrawing (deactivating) group

 $\overline{O} > NR_2 > NH_2 > OH > NHAc, OMe > Ar > Me > X$

(iii) If both groups belong to the second class, isomeric compounds are formed. However, the order of decreasing directing powers are:

 $NMe_3 > NO_2 > CN > SO_3H > CHO > COMe > CO_2H$

Orientation of Attacking E⁺ in Di-substituted Benzenes

X

a) Interaction between the substitutent and attacking E+

Nitration:

Formation of the nitronium ion.

$$H - \ddot{O} - \overset{i}{N} = O + H - O - \overset{i}{S} - O - H \iff H - \overset{i}{O} + \overset{i}{H} = O + HSO_{4}^{-} \iff O = \overset{i}{N} = O + H_{2}\ddot{O} = \overset{i}{N} = O + H_{2}\dot{O} = \overset{i}{N} = O + H_{2}\dot{O}$$

Nitrating agents

- i) Conc. H_2SO_4 and conc. HNO_3
- ii) HNO₃ in water
- iii) Conc. HNO₃ and glacial AcOH
- iv) Fuming HNO_3 and fuming H_2SO_4
- v) Acylnitrates e.g. CH₃COONO₂, PhCOONO₂

Dr. Mohammed IKBAL, Dept. of Chemistry, Berhampore Girls' College

vi) ⁺NO₂BF₄⁻ vii) N₂O₅ **Nitrosation** is a process of converting organic compounds into <u>nitroso</u> derivatives, i.e. compounds containing the R-NO functionality.

Friedel-Crafts reaction

Alkylating agents are R-X, $H_2C=CH_2$, R-OH, HC=CH

 \blacktriangleright reactivity order of all type reagent is 3° >Allyl, benzyl > 2° >1°

Reactivity among halide is fluoride > chloride > bromide > Iodide

♦ Reactivity order of Lewis acid catalyst is AlCl₃ > AlBr₃ >GdCl₃ >FeCl₃ >SbCl₃ > SnCl₄ >BF₃, BCl₃. When ROH is used, HF, H₂SO₄ or BF₃
♦ Nitrobenzene is used as a solvent for Fridel-Crafts alkylation reaction.
Dr. Mohammed IKBAL, Dept. of Chemistry, Berhampore Girls' College

Friedel-Crafts reaction

Friedel-Crafts Acylation

Houben–Hoesch reaction: It is a reaction where a nitrile reacts with an arene compound to form an aryl Ketone . The reaction is a type of Friedel-Crafts acylation with hydrogen chloride and a Lewis acid catalyst.

The synthesis of 2,4,6-Trihydroxyacetophenone from phloroglucinol is representative. If two-equivalents are added, 2,4-Diacetylphloroglucinol is the product.

Gattermann reaction

Benzene, alkylbenzene, Phenols, phenolic ethers, and some heterocyclic compounds under go this reaction, but nitrobenzene, amines and m-directing group do not under go this reaction.

Gattermann-Koch reaction (aldehyde synthesis)

Phenols, phenolic ethers, and m-directing group do not under go this reaction

Vilsmeier-Haak reaction

Reimer-Tiemann reaction

Kolbe smith reaction

Sulfonylation reaction

$$+ \operatorname{Conc} \operatorname{H}_2 \operatorname{SO}_4 + \operatorname{H}_2 \operatorname{O}$$

Other Sulfonating agent fuming H_2SO_4 , Olium (SO₃ in H_2SO_4 ,), SO₃ in organic solvent (CH₃NO₂,pyridine, ClHSO₃ in CCl₄ etc

The **kinetic isotope effect** for the sulfonylation of **benzene** at 25.0° was found to be $kH/kD = 0.86 \pm 0.06$.

Basically, it states that at equilibrium each individual reaction occurs in such a way that the forward and reverse rates are equal.

IPSO substitution

 $Z = -SO_3H$, $-CO_2H$, I, $-SiMe_3$, $-CMe_3$

Chloromethylation reaction

Model questions

Q1. Which is most (and least reactive) reactive in electrophilic substitution?

Q2. Which gives a meta nitro compound as the main product upon nitration with mix acid?

Q3. Which is most reactive in electrophilic substitution?

Q4. Which will be the main product upon chlorination of *m*-nitrotoluene with $Cl_2/AlCl_3$?

Q5.
$$(A) + (B)$$

OMe

Q6. Write down the pdt in each case on treatment with nitric acid-sulfuric acid mixture? a) $()^{\oplus}$ b) $()^{\oplus}$ $()^{O2}$ b) $()^{O2$

Model questions

Q7. What are the major products from the reactions of phenyl ethanoate and ethyl benzoate with HNO_3 / H_2SO_4 / heat ?

Q8. How can you prove that the aromatic electrophilic substitution reaction is a multi steps process

Q9. Both a) and b) gives same product on treatment with excess Br_2/H_2O , explain

Substitution reaction in aromaic system

Why simple benzene does not under goes normal nucleophilic substitution or addition reactions??

Benzene does not react with Br₂ to yield an addition product. Instead, in the presence of a Lewis acid, bromine substitutes for a hydrogen atom, yielding a product that retains the benzene ring.

Addition-elimination reaction

The Effect Of Substituents On The Ring

The Effect Of The Leaving Group

Model question

Nucleophilic aromatic substitution: Reaction Energy Diagram

Evidences in favour S_N2Ar reaction

adding nucleophiles to various electron-poor aromatic molecules with a leaving group, intermediates have been isolated. One of the first was isolated in 1902 by **Jacob Meisenheimer**, and the general name "*Meisenheimer complex*" is given to these intermediates.

Further heating of these products results in the substitution product.

Pretty clear evidence for a two-step mechanism that proceeds through

1) attack of nucleophile on the ring

2) elimination of the leaving group

Nucleophilic Aromatic Substitution ie). Nucleophilic aromatic Substitution **Bimolecular Nucleophilic Aromatic Substitution** S_NAr S_N2Ar (addition-elimination) rate = k[Nu][ArX] Nucleophilic Aromatic Substitution - Some Examples NO₂ NO₂ Nu + x[⊖] EWG NH₃ + NH₄CI σ-complex (excess) (Meisenheimer complex) NH₂ EWG EWG EWG EWG

Sanger's Reagent $H_2^{NO_2}$ H_2^{N} H_2^{N} H_2^{N} $H_2^{Peptide}$ $H_2^{NO_2}$ $H_2^{NO_2}$ $H_1^{NO_2}$ $H_1^{$

ОН

NaOH

NO₂

after hydrolysis, used to identify the *N*-terminus of a peptide (e.g. insulin)

NO₂

© 2018 Roman A. Valiulin

Electron Withdrawing Group

NO2, SO2R, CN, N2+

SN1 Ar :-

•It is very rare mechanism and observed in benzene diazonium compounds.

Nucleophilic aromatic substitution: the addition-elimination mechanism

Importantly, the only substitution product is the one where the **nucleophile attached to the same carbon as that bearing the leaving group**. (This differentiates it from electrophilic aromatic substitution, where a mixture of *ortho-*, *para–* and *meta-* products can be obtained.)

A "Nucleophilic Aromatic Substitution" In Name, But By A Different Mechanism

Observation #1: no reaction occurs without ortho-hydrogens!

Does this also go through the addition-elimination mechanism?

Observation #2 : in this example, the *ortho-* and *meta-* products are formed, but none of the *para-* is observed

The Benzyne Intermediate

Roberts' Classic Experiment (1953) Using ¹⁴C-Labelled Chlorobenzene

- Chlorobenzene was synthesized that contained ¹⁴C at the carbon attached to the leaving group (Cl)
- Hypothesis: If the reaction goes through addition-elimination, the product will NH₂ bonded exclusively to the ¹⁴C labelled carbon
- · In fact, the reaction produced a mixture of two products in about a 1:1 ratio !

roughly 50:50 ratio of products implies the involvement of a *symmetrical* intermediate which is attacked equally on either side. involvement of a short-lived intermediate bearing a carbon-carbon triple bond: *"Benzyne"*

Reactions Of Substituted Benzyne ("Arynes")

Substituted benzynes ("arynes") can produce multiple products

When an electron-withdrawing group (EWG) is present, the intermediate where the negative charge is closest to the EWG will be favored

Case #1 - triple bond between meta and para carbons:

Case #2 - triple bond between ortho and meta carbons:

